Data Methods
HepVu visualizes data related to Hepatitis C in the U.S., including standardized state-level estimates of people living with Hepatitis C infection. These estimates were generated by researchers affiliated with the Emory University Coalition for Applied Modeling for Prevention (CAMP) project, including from the University of Albany and Georgia State University, and researchers from the Centers for Disease Control and Prevention (CDC). HepVu is led by Patrick Sullivan, Ph.D., Professor of Epidemiology and Co-Director of the CFAR Prevention Science Core. HepVu currently maps Hepatitis C prevalence and mortality data for all U.S. states and Hepatitis C mortality at the county-level. Hepatitis C prevalence and mortality maps at the state-level can be viewed overall and by age group, race, and sex. At the county level HepVu displays Hepatitis C mortality which can be viewed overall and by age and two county- level opioid indicators: overdose mortality and opioid prescription rate. HepVu also displays three state-level opioid indicators: overdose mortality rate, opioid prescription rate, and pain reliever misuse prevalence. HepVu also displays estimated overall injection-involved overdose deaths data at the state level. Additional data comparisons include social determinants of health, such as poverty, high school education, and people without health insurance as well as maps on opioid indicators at the state and county level and Hepatitis C treatment restrictions such as fibrosis, sobriety, prescriber, and retreatment restrictions at the state level.
Other HepVu resources including state profile pages, blogs with viral hepatitis experts, and infographics provide supplementary visualizations and complement the data presented in the maps and existing surveillance reports. Downloadable resources include map images, infographic panels that can be used for presentations or other materials, and downloadable datasets.
Detailed below are HepVu’s data methods and sources.
Definitions
Hepatitis C Prevalence: The data reflect persons with a positive or indeterminate anti-Hepatitis C virus (HCV) test and positive HCV RNA test.
Hepatitis C Mortality: The data reflect deaths among persons with acute viral hepatitis C or chronic viral hepatitis C as an underlying cause of death. The map title “Deaths related to Hepatitis C” has been used to encompass deaths of persons diagnosed with acute or chronic Hepatitis C.
Injection-Involved Overdose Deaths: The data reflect the percentage of overdose deaths that were estimated to be injection-involved.
Opioid Prescription Rate: The data reflect the number of opioid prescriptions dispensed in the U.S. per 100 persons. A prescription is considered a pharmaceutical dispensed initially or as a refill.
Overdose Mortality Rate: The data reflect deaths of persons from narcotic overdose per 100,000 persons.
Pain Reliever Misuse Prevalence: The data reflect the percentage of persons who self-report indicators of misusing prescription psychotherapeutics (defined as use in any way not directed by a doctor) in the past year.
Fibrosis Restrictions: the data reflect states that restrict access to Hepatitis C treatment based on the disease severity. Fibrosis restrictions are based on the fibrosis score, or stage of liver damage (F1, F2, F3, or F4).
Substance Use Restrictions: the data (also called “Sobriety Restrictions”) reflect states that require a period of abstinence from drugs or alcohol prior to or during treatment or require providers to counsel their patients regarding drug or alcohol use. Sobriety restrictions are measured based on the following categories: no sobriety restrictions, sobriety screening and counseling, abstinence during treatment, 1 month sobriety, 3 months sobriety, 6 months sobriety, and 12 months sobriety.
Prescriber Restrictions: The data reflect states that restrict access to HCV treatment by requiring the prescription to be issued by or in consultation with a specialist, or by requiring prescriber training or certification.
Prior Authorization Restrictions: The data reflect states that have prior authorization requirements before providing access to HCV treatment.
Retreatment Restrictions: The data reflect states that impose retreatment restrictions for those seeking HCV retreatment that are more severe than the restrictions imposed on patients seeking initial treatment.
Data Source
Hepatitis C Prevalence Estimates:
State-level Hepatitis C prevalence estimates presented on HepVu were published by the Coalition for Applied Modeling for Prevention (CAMP) researchers. These estimates were calculated using four data sources – National Health and Nutrition Examination Survey (NHANES) (1999-2016), National Vital Statistics System (NVSS) (1999-2016), American Community Survey (ACS) Public Use Microdata Samples (PUMS) (2012-2016), and U.S. Census intercensal data (1999-2016). Additional populations not sampled in NHANES, including those who are incarcerated, experiencing unsheltered homelessness, and living in nursing homes, were taken into account using values from a systematic literature review.
- Weighted NHANES data represent all non-institutionalized people six years of age and older residing in the 50 states and the District of Columbia (D.C.). Demographic information and blood specimens are collected by NHANES. For these estimates, persons with a positive or indeterminate anti-HCV test and positive HCV RNA test were considered to have prevalent Hepatitis C infection. As NHANES data and corresponding sampling weights are released every two years, data from nine cycles were used, representing an 18-year span (1999-2016). NHANES responses were grouped by demographic information. Sex was categorized into male and female. Race/ethnicity was categorized into non-Hispanic Black, and other races/ethnicities. Age was categorized into three birth cohorts: born before, during, and after 1945-1969. Poverty was categorized into three groups: below the federal poverty level, 1.0 to 1.9 times the federal poverty level, and 2.0 times the federal poverty level or more.
- The NVSS data are collected using information from death certificates of all U.S. residents within the 50 states and D.C. Deaths of residents of Puerto Rico, other U.S. territories, and fetal deaths are not included. Demographic, geographic, and cause-of-death information for each individual is recorded. Any records that included the ICD-10 code for acute viral hepatitis C (B17.1) or chronic viral hepatitis C (B18.2) as the underlying or multiple cause of death were considered deaths related to Hepatitis C. Narcotic overdose mortality was classified using ICD-10 codes for unintentional poisoning by and exposure to narcotics and psychodysleptics (hallucinogens) (X42), unknown unintentional poisoning by and exposure to narcotics and psychodysletpics (hallucinogens) (Y12), unintentional poisoning by and exposure to other and unspecified drugs, medicaments, and biological substances (X44), and unknown intention poisoning by and exposure to other and unspecified drugs, medicaments, and biological substances (Y14).
- The ACS provides PUMS data as records at the individual person or housing unit level with response information such as sex, age, and other characteristics. The five-year PUMS files were used for the modeled estimates and are the multiyear combinations of the single year ACS data. State-by-demographic group population totals from the 2012-2016 five-year ACS estimates were used in calculations to determine Hepatitis C prevalence in each state in 2016.
- The U.S. Census Bureau produces demographic and geographic data through decennial censuses, annual surveys, and population estimates and projections. Intercensal data were used to provide denominators for HCV mortality rates for each year during 1999-2012.
Additional analyses accounted for populations not included in NHANES. Researchers conducted a systematic literature review of articles published between 2013 and 2017 to estimate HCV prevalence among incarcerated and homeless populations. For nursing home residents, state-level population size estimates were obtained from public data sources and multiplied by age- and sex-specific national HCV prevalence rates to estimate the number of people with prevalent HCV infection.
The Hepatitis C prevalence analyses were restricted to people aged 18 years or older, living within the 50 states and D.C. The NHANES data were used to calculate direct weighted estimates of national Hepatitis C prevalence. The 2012-2016 ACS PUMS data were used to generate estimated population totals within each state, stratified by era (pre- and post-2013), sex, race/ethnicity, and birth cohort. These state-by-strata population totals were multiplied by the stratified Hepatitis C prevalence estimates to generate crude state-level estimates. NVSS mortality data and intercensal population totals were used to model the HCV-related and narcotic overdose death rates in the same strata by state. Within strata, these two mortality rates were combined using weights computed from data-driven assumptions about the proportion of HCV prevalence in a given birth cohort that was likely to be attributable to injection drug use. The combined mortality rates were multiplied by state-by-strata prevalence estimates to generate mortality-adjusted HCV prevalence totals in each stratum in each state. These were summed within states across strata, and the numbers of additional prevalent HCV infections estimated from populations unsampled by NHANES were added to state-specific estimates. For the stratified estimates, state- and strata-specific hepatitis C prevalence among populations unsampled by NHANES were estimated in a way that reflected state- and strata specific hepatitis C estimates derived from NHANES. This difference in estimation methods may result in differences between summed totals of stratified estimates and overall state-level estimates. Last, these estimates were combined with 2012-2016 ACS population totals to generate HCV prevalence estimates for each state.
Rates are expressed as the number of estimated cases per 100,000 people in the population, rounded to the nearest 10 persons. It is an expression of the relative concentration of people with current Hepatitis C infection in an area (state). Estimated cases are rounded to the nearest hundred persons.
Hepatitis C State Mortality Data
The state-level Hepatitis C mortality data presented on HepVu (single-year data from 2018-2021) were obtained from the Centers for Disease Control and Prevention (CDC) WONDER Online Database System and compiled by researchers at the Rollins School of Public Health at Emory University. The CDC WONDER data are collected using information from death certificates of all U.S. residents within the 50 states and D.C. Deaths of residents of other U.S. territories and fetal deaths are not included. Demographic, geographic, and cause-of-death information for each individual is recorded. Any records that included the ICD-10 code for acute viral hepatitis C (B17.1) or chronic viral hepatitis C (B18.2) as the underlying or multiple cause of death were used to identify deaths related to hepatitis C.
If the death count for any particular group/state is less than 10, data are suppressed and appear as gray on the maps. If the death count for any particular group/state is 10 or greater and less than 20, the rate generated from that count is considered unreliable.
Hepatitis C County Mortality Data
The county-level hepatitis C mortality data presented on HepVu (single-year data from 2000-2020) are estimates calculated by researcher Eric Hall, using data from the National Center for Health Statistics Detailed Multiple Cause of Death (2000-2020) using deaths that listed ICD-10 codes for acute viral hepatitis C (B17.1) and chronic viral hepatitis C (B18.2) as a multiple cause of death. National Center for Health Statistics bridged-race annual county-level were used for the population denominators. A Bayesian multivariate model space-time conditional autoregressive model was used to model the annual number of hepatitis C deaths. The modeled counts were aggregated to estimates overall and age-stratified (<40 years and 40+ years) age-standardized county-level hepatitis C death rates. Previously, estimates for 2005-2017 were published by Eric Hall, et. al., in a paper titled “County-Level Variation in Hepatitis C Virus Mortality and Trends in the United States, 2005-2017.” The same methods described in this paper were used to update the data for 2000-2020.
Injection-Involved Overdose Deaths Data
The state-level injection-involved overdose deaths data presented on HepVu (single-year data from 2000-2020) were published by Eric Hall, et. al., in a paper titled “Estimated number of injection-involved overdose deaths in US States, 2000-2020”. Briefly, a stratified analysis was conducted that utilized data from drug treatment admissions to estimate the percentage of persons injecting by reported drug type, within demographic strata (race/ethnicity, sex, age group). Using this estimated percentage along with counts of overdose deaths from the National Vital Statistics System (NVSS), we estimated the number of persons that died from an injection-involved drug overdose death within each state and year. We then divided the estimated number of injection-involved overdose deaths by the total number of overdose deaths to obtain the percentage of overdose deaths that were injection-involved, for each state and year.
All analyses were limited to adults ≥18 years within 50 US states and District of Columbia.
If the annual number of treatment admissions that reported any of the five drug types was less than 50 within any state, the results for that state and year were suppressed. Additionally, if more than 15% of treatment admissions that reported a drug of interest were missing, the results for that state and year were suppressed.
County Opioid Indicators
There are two opioid indicators mapped on HepVu at the county level. The two indicators are overdose mortality rate in 2021 and opioid prescription rate in 2021.
County-level data on drug overdose mortality were obtained from the CDC’s National Center for Health Statistics and National Vital Statistics System (NVSS). Data from NVSS classified drug overdose death using International Classification of Diseases, Tenth Revision codes: X40–X44 (unintentional), X60–X64 (suicide), X85 (homicide), or Y10–Y14 (undetermined intent).
The opioid prescriptions rate data for 2021 for all U.S. counties were obtained from the CDC’s National Center for Injury Prevention and Control. CDC derived the data from the IQVIA Transactional Data Warehouse to obtain the number of opioid prescriptions dispensed in the U.S. via retail. Please see the full CDC report for more details.
State Opioid Indicators
There are three opioid indicators mapped on HepVu at the state level. The three indicators are overdose mortality rate in 2021, opioid prescription rate in 2021, and pain reliever misuse prevalence in 2021.
State-specific data for overdose mortality rates were obtained from the CDC injury center and the NVSS. Deaths were classified using the International Classification of Diseases, Tenth Revision. Drug overdose deaths were identified using underlying cause-of-death codes X40–X44, X60–X64, X85, or Y10–Y14. Rates are age-adjusted using the 2000 U.S. standard population, except for age-specific crude rates. All rates are per 100,000 population.
The opioid prescription rate data were obtained from the CDC injury center. The rates of opioid prescription dispensed per 100 persons by dosage, type, and state data were collected from U.S. Opioid Dispensing Rate Maps. CDC derived the data from the IQVIA Transactional Data Warehouse to obtain the number of opioid prescriptions dispensed in the U.S. via retail. Please see the full CDC injury center drug overdose website for more details.
Pain reliever misuse data were obtained from a report produced by the Substance Abuse and Mental Health Service Administration (SAMHSA). The data come from the 2021 NSDUH: Model-Based Estimated Prevalence For States Report. The data are collected in the National Survey on Drug Use and Health. Misuse was described as anyone 12 and older using a prescription psychotherapeutic drug in any way not directed by a doctor and does not include over-the-counter drugs. Please see the full SAMHSA report for more details.
Treatment Restriction Data
The treatment restriction data published on HepVu) come from the Center for Health Law and Policy Innovation at Harvard Law School (CHLPI). CHLPI, in collaboration with the National Viral Hepatitis Roundtable (NVHR), evaluated the status of Hepatitis C treatment restrictions for each state in the United States. To find these data, CHLPI evaluated the Medicaid reimbursement criteria for available direct-acting antivirals (DAAs) in each state, Washington DC, and Puerto Rico. A survey form was sent to each state’s Medicaid officials requesting their coverage criteria for DAAs. If a state was unresponsive, then the state’s Medicaid website was searched for any publicly available information. If the data in the survey form conflicted with publicly available data, then it was resolved either by communicating with the Medicaid officials in that state or by consensus. Along with Medicaid fee-for-service programs, data was also evaluated from managed care organizations (MCOs).
Data Stratification
HepVu allows viewers to examine Hepatitis C state-level prevalence and mortality data at the overall state level for cases and rates, as well as stratified by age group, race/ethnicity, and sex. The county-level mortality data displays rates overall and by two age groups, under 40 and 40 and older. The state-level prevalence and mortality data display age as three birth cohorts –<50 years, 50-74, and 75+. The prevalence data display race/ethnicity as non-Hispanic Black and persons of other races/ethnicities. The state mortality data display race/ethnicity as non-Hispanic American Indian or Alaska Native, non-Hispanic Asian, non-Hispanic Black/African American, non-Hispanic Native Hawaiian or Pacific Islander, non-Hispanic White, Multiple Races, and Hispanic/Latinx. The state prevalence and mortality data display sex as male or female.
Ranges/Legend Values
Range intervals were developed using the Jenks natural breaks classification method. This method groups data values into meaningful and distinct classes, with the goal of minimizing the variance within each class while maximizing the variance between classes. Zeros were excluded in the calculation of cut points for rates, cases, and percentages. This method is implemented each time data is updated to determine the most appropriate ranges for each map. In order to illustrate the variation in rates and case counts, values were developed specific to each demographic grouping (i.e., overall, and separately by sex, by race, and by age group). Values were also developed for each of the opioid indicators maps and the five social determinants of health data comparison maps (see section below for details). The treatment restrictions legends were developed based on the different values for each map.
Caution should be exercised when viewing and interpreting different maps because the scales change across the different demographic breakdowns and geographic levels.
Data Comparisons
Social determinants of health, opioid indicators, and Hepatitis C treatment restrictions are available as maps and their associated scales were developed using the same method described above. The five social determinants displayed include: poverty (percent of population living in poverty), high school education (percent of population without a high school degree or equivalent), median household income, income inequality (measured by the Gini Coefficient, a measure of income inequality where 0 reflects complete equality and 1 reflects complete inequality), and people < 65 years of age without health insurance (percent of population lacking health insurance). The three opioid indicators are overdose mortality rate, opioid prescription rate, and pain reliever misuse prevalence. The five Hepatitis C treatment restrictions are fibrosis restrictions, substance use restrictions (also called sobriety restrictions), prescriber restrictions, prior authorization restrictions, and retreatment restrictions.
Downloadable Datasets
National data are available for download. The state data available are 2013-2016 Hepatitis C prevalence, single-year 2018-2021 Hepatitis C state mortality, 2021 overdose mortality rate, 2021 opioid prescription rate, 2021 pain reliever misuse prevalence, 2022 social determinants of health, Hepatitis C 2017-2024 treatment restrictions, and 2000-2020 injection-involved overdose deaths. At the county-level, single-year 2000-2020 Hepatitis C mortality data, 2021 overdose mortality rate, and 2021 opioid prescription rate are available for download.
The downloadable datasets may have suppressed/missing values for several reasons. Suppressed and/or missing data are represented as -1, -2, or -9 in the dataset and indicate the following:
-1: Data not shown because of a small number of deaths and/or a small population.
-2: Data not available for this jurisdiction.
-9: Data are missing.
Citation
Data, maps, and information from HepVu may be used, provided credit is given to HepVu and the Rollins School of Public Health at Emory University. Recommended citations:
Data Source: HepVu (hepvu.org). Emory University, Rollins School of Public Health.
Hepatitis C Prevalence Manuscript Source: https://jamanetwork.com/journals/jamanetworkopen/fullarticle/2719137
Stratified Hepatitis C Prevalence Manuscript Source: https://aasldpubs.onlinelibrary.wiley.com/doi/full/10.1002/hep4.1457
Hepatitis C County Mortality Manuscript
Source: https://aasldpubs.onlinelibrary.wiley.com/doi/abs/10.1002/hep.31756
Data Sources
Hepatitis C and Opioid Data
Data Element | Location on HepVu | Data Source | Anticipated Update Frequency on HepVu Website |
Estimated Rates and Case Counts of People Living with Hepatitis C Overall, State Data | Maps; Downloadable Datasets; State Profile Pages | Rosenberg ES, Rosenthal EM, Hall EW, et al. Prevalence of Hepatitis C Virus Infection in US States and the District of Columbia, 2013 to 2016. JAMA Netw Open. 2018;1(8):e186371. doi:10.1001/jamanetworkopen.2018.6371 | When available |
Estimated Stratified Rates and Case Counts of People Living with Hepatitis C, State Data | Maps; Downloadable Datasets; State Profile Pages | Bradley H, Hall EW, Rosenthal EM, et al. Hepatitis C Virus Prevalence in 50 U.S. States and D.C. by Sex, Birth Cohort, and Race: 2013-2016. Hepatology Communications. 2020. doi:10.1002/hep4.1457 | When available |
Rates and Case Counts of Hepatitis C Mortality, State Data | Maps; Downloadable Datasets; State Profile Pages | Centers for Disease Control and Prevention. National Center for Health Statistics. CDC WONDER Online Database. | Annually |
Rates of Hepatitis C Mortality, County Data | Maps; Downloadable Datasets | County‐Level Variation in Hepatitis C Virus Mortality and Trends in the United States, 2000‐2020 | When Available |
Rate of Opioid Prescriptions, State Data | Maps; State Profile Pages; Downloadable Datasets | Centers for Disease Control and Prevention; U.S. Opioid Dispensing Rate Maps | When Available |
Rate of Overdose Mortality, State Data | Maps; State Profile Pages; Downloadable Datasets | Centers for Disease Control and Prevention. National Vital Statistics System, CDC WONDER Online Database.
|
When Available |
Percent of People Misusing Pain Relievers, State Data | Maps; State Profile Pages; Downloadable Datasets | Substance Abuse and Mental Health Services Administration; 2021 National Survey on Drug Use and Health: Model-Based Prevalence Estimates for States | When Available |
Rate of Opioid Prescriptions, County Data | Maps; Downloadable Datasets | Centers for Disease Control and Prevention; U.S. Opioid Dispensing Rate Maps | When Available |
Rate of Overdose Mortality, County Data | Maps; Downloadable Datasets | Centers for Disease Control and Prevention. National Vital Statistics System, National Center for Health Statistics. | When Available |
Percentage of Injection-Involved Overdose Deaths | Maps; State Profile Pages; Downloadable Datasets | Hall, Eric, et al. “Estimated Number of Injection-Involved Overdose Deaths in US States From 2000 to 2020: Secondary Analysis of Surveillance Data.” JMIR Publications, 4 May 2024, publichealth.jmir.org/2024/1/e49527.
|
When Available |
Data Comparisons
Data Element | Location on HepVu | Data Source | Anticipated Update Frequency on HepVu Website |
Hepatitis C Treatment Restrictions, State Data | Maps; State Profile Pages; Downloadable Datasets | Center for Health Law and Policy Innovation at Harvard Law School (CHLPI) & National Viral Hepatitis Roundtable; Data Request, August 2024. | Annually |
Poverty (Percent of population, all ages, living in poverty), State Data | Maps; State Profile Pages; Downloadable Datasets | U.S. Census Bureau, American Community Survey 5- Year Estimates, 2022, Table S1701: Poverty Status in the Past 12 Months | Annually |
Educational Attainment (Percent of people aged 25 and over without a high school diploma or equivalent), State Data | Maps; State Profile Pages; Downloadable Datasets | U.S. Census Bureau, American Community Survey 5- Year Estimates, 2022, Table S1501: Educational Attainment | Annually |
Median Household Income, State Data | Maps; State Profile Pages; Downloadable Datasets | U.S. Census Bureau, American Community Survey 5-Year Estimates, 2022, Table S1903: Median Income in the Past 12 Months | Annually |
Percent of population under age 65 lacking health insurance, State Data | Maps; State Profile Pages; Downloadable Datasets | U.S. Census Bureau, American Community Survey 5-Year Estimates, 2022, Table 2701: Selected Characteristics of Health Insurance Coverage in the United States | Annually |
Gini Coefficient of income inequality, State Data | Maps; State Profile Pages; Downloadable Datasets | U.S. Census Bureau, American Community Survey 5-Year Estimates, 2022, Table B19083: Gini Index of Income Inequality | Annually |
Population and Racial/Ethnic Make-Up | State Profile Pages | U.S. Census Bureau, American Community Survey 5-Year Estimates, 2022, Table DP05 (ACS Demographic and Housing Estimates) and Table S0101 (Age and Sex) | Annually |